Ветряные электростанции

Содержание

Типы ветрогенераторов

По мощности и области применения ветрогенераторы бывают

  • промышленные (мощность от 500 КВт);
  • бытовые (мощность 0-10 КВт).

Устройства с мощностью от 10 до 500 КВт используются крайне редко.

По конструкции бытовые типы ветряков отличаются конструкцией ротора (турбины)

  1. С горизонтальной осью. Отличаются системой управления турбины (ротора), она может быть:
    • аэромеханической (на лопастях установлены специальный «закрилышки», которые меняю угол направления ветра: чем больше скорость ветра, тем больше угол атаки лопастей и наоборот). Меняя угол атаки, мы можем управлять турбиной как на малых, так и на больших скоростях для эффективной и правильной работы устройства.
  2. с азимутальным приводом (электроника фиксирует скорость и направление ветра, поворачивает или отворачивает турбину от ветра, если скорость ветра превышает номинальную).
  3. С вертикальной осью – это малоэффективные устройства, которые не рекомендовано использовать из-за ряда недостатков. Они отличаются типом турбин:
    • ротор Савониуса (Savonius).Их недостатком является коэффициент опережения. Если скорость ветра 10 м/с, то законцовка турбины будет вращаться со скоростью 100 м/с, соответственно, коэффициент опережения – 10. Фактически ветряк не может самостоятельно стартовать, его нужно раскручивать и только после этого он начинает работать. Если этого не делать, то он начет вырабатывать энергию только при скорости ветра 10 м/с и больше.
  4. ротор Дарье (Darrieus). Применяются разве что как анемоскопы, так как малоэффективные.

Сейчас широкое применение получили ветрогенераторы с горизонтальной осью вращения (крыльчатые), благодаря тому, что у них коэффициент использования энергии ветрового потока (КИЭВ) легко достигает 30% и больше, а у ветрогенераторов с вертикальной осью вращения КИЭВ составляет около 20%.

Система бытового энергоснабжения с использованием ветрогенератора похожа на систему с солнечными модулями, в одной системе могут использоваться как ветрогенераторы, так и солнечные модули.

От высоты мачты и диаметра ротора зависит количество выработанной энергии следующим образом: на каждые 10 метров подъёма ветряка добавляется 1 м/с скорости ветра. Чем выше мачта, тем больше вероятность того, что он будет работать максимально эффективно. И та же ситуация с ротором: чем больше диаметр, тем больше выработка энергии.

Значения силы ветрового потока для работы ветряка

  1. Скорость ветра для начала вращения лопастей, при котором мощности нет вообще – от 1,5 м/с.
  2. Минимальная скорость ветра при которой уже начинается генерация мощности – 3 м/с.
  3. Номинальная скорость ветра (для ветрогенераторов украинского производства) – 7-9 м/с.
  4. Максимальная скорость ветра, при которой ветрогенератор украинского производства сохраняет свою работоспособность– 52 м/с (200 км/час), что свидетельствует о высоком качестве сборки установки и прочности материалов изготовления.

Мощности промышленных станций

Промышленные ВЭС имеют весьма высокую мощность, способную обеспечивать крупные населенные пункты или регионы. Например, ВЭС «Ганьсу» в Китае имеет 7965 мВт, «Энеркон Е-126» выдает 7,58 мВт, и это еще не предел.

Следует сразу же оговориться, что речь идет о лидерах в ветроэнергетике, другие модели вырабатывают намного меньше энергии. Тем не менее, объединенные в крупные станции, ветряки способны на производство вполне достаточного количества электроэнергии. Объединенные комплексы вырабатывают суммарную мощность в 400-500 мВт, что вполне может сравниться с производительностью ГЭС.

Ложные теории

Самые распространенные мифы про ветроэнергетику:

  1. Ветряки убивают птиц. Сложно отрицать, что птицы иногда врезаются в лопасти или мачту ветрогенератора и погибают. Но не меньше птиц погибает от электропроводов. По статистики больше всего умирает птиц из-за нападения кошек.
  2. Самый распространенная ложная теория — это то, что шум от ветряного генератора может негативно сказаться на здоровье человека, в том числе дать осложнения на органы слуха.
  3. Не экологичный источник, так как рост количества ВЭС увеличивает выброс углекислого газа. Да, но в сравнение с угольными или газовыми электростанциями этот показатель в 50 раз меньше.
  4. Безработица. Ходит мнение, что получение энергии таким способом сократит рабочие места, однако этот миф легко развеять. В любом развивающемся секторе не может возникнуть безработица, так как ветроэнергетика всегда нуждается в новых кадрах — исследователи, разработчики.

Ложные теории появляются из-за незнания тема, однако все их легко опровергнуть, что было сделано многократно.

1 Как устроена ветряная электростанция

Ветряные генераторы, в отличие от своих бензиновых и дизельных аналогов, только набирают популярность. Стоимость таких электростанций в несколько раз выше, чем привычных автономных источников энергии. Но, в отличие от них, ветряк использует бесплатную энергию ветра и самоокупается через 5–6 лет эксплуатации.

Ветряной электрогенератор – это устройство, преобразующее кинетическую энергию воздушных потоков (ветров), в механическую (с помощью ротора), а затем в электрическую. Второе название этого механизма «ветряная электрическая установка» (ВЭУ), он используется в коммерческих, бытовых и промышленных целях.

Ветряные генераторы в последнее время набирают популярность

Ветровые электростанции для дома состоят из следующих элементов:

  • Основной блок – подвижное ветряное колесо, приводящее в движение всю конструкцию;
  • Редуктор, предназначенный для передачи энергии колеса генератору;
  • Генератор, который вырабатывает переменный ток;
  • Контролер – управляет колесом и преобразуют электричество, поступающее от генератора, в постоянный ток, заряжающий аккумуляторные батареи;
  • Инвертор – трансформирует постоянный ток из АКБ в переменный, который используется в домашней электросети;
  • Аккумуляторы высокой емкости, как правило, собираются в единый блок и служат для накопления и выравнивания электрической энергии;
  • Мачта или ферма-основание – к ним крепится ветровое колесо.

Несмотря на похожее устройство и одинаковый принцип действия, ветряки для дома отличаются по нескольким параметрам. К примеру, по материалу, из которого изготовлены лопасти колеса, их количеству, направлению оси движения и шаг винта.

Различают ветряки с одной, двумя и тремя лопастями или совсем без них. Причем последние установки становятся все более востребованными. Роль ветряного колеса в них выполняет «парус» – конструкция в виде тарелки. Она приводит в действие поршни гидросистемы, которая вырабатывает энергию. Производители сознательно усложнили устройство ВЭУ, т. к. это позволило увеличить её КПД. Мощность лопастного ветрогенератора определяется просто – чем меньше лопастей, тем больше энергии он вырабатывает.

Ветровые электростанции преимущества и недостатки

Преимущества установки ветровых электростанций:

  1. Экологичность. Сегодня этот фактор играет большую роль. А добыча энергии с помощью ветряков это экологичный способ, который никак не влияет на окружающую природу.
  2. Экономичность. По сравнению с другими источниками получения энергии, ветровые станции в строительстве обходятся намного экономичнее.
  3. Нескончаемый источник энергии.
  4. Эффективность работы — электростанция вырабатывает в 80 раз больше энергии, чем потребляет.
  5. Местоположение. Ветряк можно поставить в любом месте, в отличие от традиционных станций.
  6. Современные ветряки могут работать при скорости от 3,5 м/с.
  7. Технологическое развитие.

Минусы ветроэнергетики:

  1. Работа ветряка зависит от силы потока ветра, которого может и не быть.
  2. Изменение ландшафта местности из-за строительства ветряных парков.
  3. Затраты на поиск и изучение местности для ветряков и их строительство.
  4. Турбины станций создают низкочастотные шумы, которые оказывают негативное влияние на человека.
  5. Создают опасность для птиц.
  6. Менее продуктивны по сравнению с другими станциями.

У ветроэнергетики есть свои сторонники, которые считаю применение ветрогенераторов экологичным способом решения проблемы с энергетикой. Но также есть люди, которые выступают против строительства ветряных парков, так как они приносят вред здоровью человека, птицам. Недостатки ветроэнергетики не сопоставимы с большим потенциалом, который кроется в этой отрасли.

Ветряная электростанция своими руками

Для работы электронасоса, телевизора, освещения или других маломощных электроприборов на дачном участке ветроэнергетическую установку можно сделать собственноручно, если есть некоторые познания в электротехнике.

Существуют справочные данные и рекомендации по выбору мощности ветрогенератора, размерам и количеству его лопастей и достаточно подробные инструкции, как сделать ветряную электростанцию своими руками, из каких материалов и узлов.

Сегодня в Европе растут капиталовложения в строительство больших ветроэлектростанций. Массовое строительство снижает себестоимость одного киловатта и приближает ее к цене электроэнергии, полученной из традиционных источников.

Конструкция ветроэлектростанций постоянно совершенствуется, улучшаются аэродинамические и электрические показатели, снижаются потери.

Ветряные электростанции для дома, по оценкам экономистов, становятся самыми эффективными в плане окупаемости проектами в области энергетики. В дальнейшем они обещают независимость от негативных тенденций на этом рынке.

Ветровые электростанции для дома

В жизни бывают различные ситуации, когда по какой-то из причин невозможно выполнитьподключение к централизованной сети электроснабжения, электроснабжение от традиционных поставщиков не является надежным или потребитель хочет быть независим от них. В этих случаях выход один — альтернативные источники энергии, ну и конечно первое что приходит на ум, это ветровая электростанция.

Чтобы выбрать подобное устройство, для электроснабжения жилого дома, необходимо изучить критерии которым должна отвечать ветровая электростанция, это:

  • Электрическая мощность;
  • Способность обеспечивать электрической энергией в заданный период (сутки, месяц, год);
  • Скорость воздушных потоков, при которых установка способна вырабатывать электрический ток;
  • Условия эксплуатации;
  • Комплект поставки и его содержание;
  • Срок эксплуатации установки;
  • Стоимость комплекта оборудования.

Из российских предприятий выпускающих ветровые электростанции наиболее известна продукция ООО «СКБ Искра» (г. Москва), ООО «ГРЦ-Вертикаль» (Челябинская область), ЗАО «Ветроэнергетическая компания» (г. Санкт-Петербург) и еще ряд компаний.

Из зарубежных производителей наиболее известны и востребованы устройства выпускаемые немецкими, датскими, бельгийскими и китайскими компаниями.

Ветровые генераторы, производимые в России

Развитие малой энергетики не обошло стороной и нашу страну, так выпуском ветровых генераторов занимаются следующие компании и организации различной формы собственности, это:

ООО «СКБ Искра», г. Москва

Предприятие выпускает ветроэнергетическую установку WW-500.

Технические параметры ветряка:

  1. Мощность – не менее 500 Вт;
  2. Напряжение – 24 В;
  3. Диаметр ветрового колеса – 2,2 м;
  4. Количество лопастей – 3;
  5. Допустимая скорость ветра – от 3,0 до 25,0 м/с;
  6. Высота опоры – 8,0 м;
  7. Вес – 80,0 кг;
  8. Выработка электрической энергии – 1050 кВт/час в год.

В настоящее время происходит модернизация установки, выпуск данной модели приостановлен.

ООО «ГРЦ-Вертикаль», г. Миасс Челябинской области

Предприятие выпускает вертикальные ветровые генераторы различной мощности и различные по габаритам, это:

Установка ВЭУ-0,1.

Технические параметры:

  1. Мощность – 100 Вт;
  2. Напряжение – 24 В;
  3. Диаметр ветрового колеса – 1,5 м;
  4. Количество лопастей – 4;
  5. Допустимая скорость ветра – от 1,0 до 25,0 м/с;
  6. Высота опоры – 2,0 м;
  7. Вес – 50,0 кг.

Установка ВЭУ- 5 (6).

Технические параметры:

  1. Мощность – 5,0 кВт;
  2. Напряжение – 24 В;
  3. Диаметр ветрового колеса – 5,1 м;
  4. Количество лопастей – 6;
  5. Допустимая скорость ветра – от 1,5 до 60,0 м/с;
  6. Высота опоры– 20,0 м;
  7. Вес – 732,0 кг.

Установка ВЭУ-30.

Технические параметры:

  1. Мощность – 30 кВт;
  2. Напряжение – 24 В;
  3. Диаметр ветрового колеса – 9,2 м;
  4. Количество лопастей – 6;
  5. Допустимая скорость ветра – от 3,0 до 60,0 м/с;
  6. Высота опоры– 5,3 м;
  7. Вес – 5100,0 кг.

Кроме приведенных выше установок, в линейке выпускаемой продукции компанией ООО «ГРЦ-Вертикаль», представлены ветровые генераторы мощностью 1,5 кВт и 3,0 кВт.

ЗАО «Ветроэнергетическая компания» г. Санкт-Петербург

Компания совместно с китайскими партнерами выпускает широкий спектр ветровых генераторов различной мощности.

Ветрогенераторы «ЗУЙД».

Технические параметры:

  1. Мощность – от 0,5 до 2,75 кВт;
  2. Напряжение – 24 В;
  3. Количество вырабатываемой электрической энергии – 30 – 500 кВт в час;
  4. Высота опоры – 10,0 – 12,0 м.

Ветрогенераторы «ВЕСТ».

Технические параметры:

  1. Мощность – от 3,0 до 7,5 кВт;
  2. Напряжение – 24 В;
  3. Количество вырабатываемой электрической энергии –550–1700 кВт в час;
  4. Высота опоры– 12,0 – 15,0 м.

Ветрогенераторы «ЗУЙД-ВЕСТ».

Технические параметры:

  1. Мощность – от 8,0 до 13,0 кВт;
  2. Напряжение – 24 В;
  3. Количество вырабатываемой электрической энергии –1700 — 2500 кВт в час;
  4. Высота опоры – 15,0 – 16,0 м.

ЛМВ «Ветроэнергетика», г. Хабаровск

Компания выпускает ветряные электрические станции следующих модификаций:

ЛМВ-250.

Технические параметры:

  1. Мощность – 250 Вт;
  2. Допустимая скорость ветра – от 3,0 до 50,0 м/с;
  3. Диаметр ветрового колеса – 1,7 м;
  4. Количество лопастей – 3;
  5. Напряжение – 12,0/24,0 В;
  6. Высота опоры – 6,0 или 9,0 м.

ЛМВ-500.

Технические параметры:

  1. Мощность – 500 Вт;
  2. Допустимая скорость ветра – от 2,5 до 35,0 м/с;
  3. Диаметр ветрового колеса – 3,0 м;
  4. Количество лопастей – 2;
  5. Напряжение – 12,0/24,0 В;
  6. Высота опоры – 8,0 м.

ООО «Сапсан-Энергия», Московская область

Компания производит ветровые генераторы:

«Сапсан-1000».

Технические параметры:

  1. Мощность – 1,0 (2,0) кВт;
  2. Допустимая скорость ветра – от 3,0 до 45,0 м/с;
  3. Диаметр ветрового колеса – 3,0 м;
  4. Количество лопастей – 3;
  5. Напряжение – 48-56 В;
  6. Вес – 100,0 кг;
  7. Количество вырабатываемой электрической энергии – 100 — 750 кВт час/в месяц.

«Сапсан-5000».

Технические параметры:

  1. Мощность – 5,0 (6,0) кВт;
  2. Допустимая скорость ветра – от 3,0 до 45,0 м/с;
  3. Диаметр ветрового колеса – 5,0 м;
  4. Количество лопастей – 3;
  5. Напряжение – 48-56 В;
  6. Вес – 200,0 кг;
  7. Количество вырабатываемой электрической энергии – 750 — 3600 кВт час/в месяц.

ООО»Стройинжсервис» г. Рыбинск

«Шексна-1».

Технические параметры:

  1. Мощность – 0,5 кВт;
  2. Допустимая скорость ветра – от 3,0 до 40,0 м/с;
  3. Диаметр ветрового колеса – 2,8 м;
  4. Напряжение – 48 В;
  5. Вес – 228,0 кг;
  6. Количество вырабатываемой электрической энергии – 850 — 19000 кВт час/в год.
  7. Высота мачты – 8,0 м.

Покоряя энергию ветра

Систематические научные исследования по получению электроэнергии из ветра были начаты уже в 1918 году, когда профессор Николай Егорович Жуковский основал Центральный аэрогидродинамический институт (ЦАГИ). В задачи Отдела ветряных двигателей в нем входили: “изучение ветряных двигателей как теоретическое, так и экспериментальное; обработка и систематизация соответственного литературного материала; изыскание способов применения ветряных двигателей к различным отраслям промышленности; составление проектов двигателей.”

на фото: Центральный аэрогидродинамический институт, wikipedia.org

Заведующий отделом, Николай Валентинович Красовский, опытный летчик, участник Первой мировой войны, начал опыты в 1919 году с небольшого американского ветрячка, установленного на крыше Аэродинамического института в Кучине. А уже в 1923 году, на Первой сельскохозяйственной выставке в Москве, командой отдела был представлен новый ветрогенератор с динамо-машиной, получивший диплом I степени. Размер башни, на которой был установлен аппарат, составлял 25 метров, а диаметр лопастей шесть метров. 

Было решено установить такой ветрогенератор на Бакинских нефтепромыслах. Под руководством Красовского, на нефтяной вышке поставили ветрогенератор с диаметром лопастей уже 14 метров. Так это непростое предприятие описывалось в советской литературе:

Преимущества и недостатки ветряных электростанций

К преимуществам ВЭС можно отнести:

  • независимость от ископаемых ресурсов;
  • используется абсолютно бесплатный источник энергии;
  • экологическая чистота методики — никакого вреда окружающей природе не наносится.

При этом, есть и недостатки:

  • неравномерность ветра создает определенные трудности в выработке энергии и вынуждает использовать большое число; аккумуляторных батарей;
  • ветряки издают шум при работе;
  • КПД ветряных электростанций низок, увеличить его очень сложно;
  • стоимость оборудования и, соответственно, электроэнергии, намного выше, чем цена сетевого электричества;
  • окупаемость оборудования с ростом его мощности значительно снижается. Наиболее производительные станции полностью не окупаются.

Использование небольших станций способно обеспечить энергией ограниченное количество потребителей, поэтому для крупных населенных пунктов или регионов требуются большие устройства. При этом, ветряки большой мощности нуждаются в соответствующих потоках ветра и равномерности его движения, что для условий нашей страны не характерно. В этом кроется основная причина низкого распространения ветряков по сравнению с европейскими странами.

Принцип работы

Как уже говорилось, ВЭС имеют роторную или крыльчатую конструкцию. Роторные станции, как правило, имеют устройства с вертикальной осью вращения. Они во многом удобнее, чем крыльчатые, так как не издают при работе сильный шум и не требовательны к установке по направлению ветра. При этом, роторные конструкции менее эффективны и могут использоваться на небольших частных станциях.

Крыльчатые устройства способны выдавать максимальный эффект. Они используют получаемую энергию намного эффективнее, чем роторные образцы, но нуждаются в правильном ориентировании по отношению к потоку, что означает присутствие дополнительных приспособлений или оборудования.

Все виды действуют по одному принципу — поток ветра раскручивает подвижную часть, которая передает вращение на генератор, вследствие чего в системе образуется электроток. Он заряжает аккумуляторы, от которых питаются инверторы, преобразующие полученный ток в стандартное напряжение и частоту, подходящие для приборов потребления.

Для обеспечения большого числа потребителей отдельные ветрогенераторы соединяются в систему, образуя станции — ВЭС.

Принцип работы ветровой электростанции

Ветряные электростанции представляют собой несколько ветряных установок, объединенных между собой в единую сеть. Крупные станции могут включать в себя более 100 ветрогенераторов. Такие места получили название “ветряные парки”. Ветрогенераторы — это экологический способ добывать энергию в течение неограниченного времени.

Эффективным местом для установки ветровых электростанций являются участки с постоянным потоком ветра — холмистая местность, горы, прибрежные участки морей и океанов. По расположению выделяют следующие виды:

  • наземные;
  • прибрежные;
  • плавающие;
  • офшорные.

По типу конструирования можно выделить:

  • роторные;
  • крыльчатые.

Крыльчатые ветряные электростанция наиболее эффективные и получили широкое применение. Они способны вырабатывать достаточное количество энергии. На высокой мачте устанавливается чаще всего трехлопастной механизм, с горизонтальной осью вращения. Мощность вращения зависит от размера лопастей. Максимальная скорость вращения достигается в моменте, когда поток ветра идет перпендикулярно лопастям. Так как потоки ветра периодически меняют направление, то имеется автоматический блок управления

Роторные электростанции имеют вертикальную ось вращения. Плюсом данного вида является то, что они не издают шум, эффективность работы не зависит от направления потока ветра, поэтому станции не нужны дополнительные блоки управления. Но по сравнению с крыльчатыми электростанциями они менее эффективны.

Принцип работы любой ветряной электростанции одинаков. Поток ветра раскручивает ротор с лопастями, которые связаны с генератором. Чем больше размер лопастей, тем больший поток они захватывают и вращается с большей скоростью. Чем быстрее крутятся лопасти, тем больше энергии вырабатывается. Генератор преобразует движение в энергию и выводит на аккумуляторы. На выходе получается пригодная для использования энергия.

Принцип работы ветрогенератора

В основу функционирования ветрогенератора положена трансформация кинетической энергии ветра в механическую энергию ротора, которая затем преобразуется в электроэнергию.

Принцип работы достаточно прост: вращение лопастей, закрепленных на оси устройства, приводит к круговым движениям роторгенератора, благодаря чему вырабатывается электроэнергия.


Ветроэнергетика является одной из наиболее перспективных отраслей возобновляемой энергетики. Современные конструкции позволяют экономически эффективно применять силу воздушных потоков, используя ее для выработки электричества

Получаемый нестабильный переменный ток «стекает» в контроллер, где он преобразуется в постоянное напряжение, способное зарядить батареи. Оттуда питание поступает на инвертор, где оно трансформируется в переменное напряжение с показателем 220/380 В, которое и подается потребителям.

Мощность ветрогенератора напрямую зависит от мощности потока воздуха (N), рассчитывается согласно формуле N=pSV3/2, где V – скорость ветра, S – рабочая площадь, p – плотность воздуха.

Проектирование ВЭС

Главный показатель, который позволяет принять решение об использовании ветроэлектростанции, — это среднегодовая скорость ветра, которая должна быть не меньше 5 м/с. Правда, сегодня уже существуют легкоразгоняемые ВЭС, предназначенные для электроснабжения частных домовладений, которые начинают работу с минимальной скорости воздушного потока в 3,5 м/с.

Для определения этого показателя используются специальные карты ветров.

В различных климатических зонах России были проведены измерения скорости ветра, чтобы определить, насколько эффективны там ветровые электростанции. Ветряные установки и станции уже действуют в Калининградской области, на Командорских островах, в Мурманске, Республике Саха (Якутии), в Башкортостане.

Принимая решение об установке ветроэнергетической установки или частной ВЭС, стоит для начала обратиться к специалистам, чтобы провести исследования направления и силы ветра с помощью анемометров и построить карты доступности его энергии. По этим данным рассчитывается и разрабатывается проект ВЭУ или станции из нескольких установок, ее технические и геометрические параметры.

Промышленную ВЭС достаточно большой мощности без инвесторов не построить, а грамотно выполненные расчеты и составленный проект позволят определить срок окупаемости проекта и привлечь дополнительные финансы.

Преимущества и недостатки ветряных электростанций

К преимуществам ВЭС можно отнести:

  • независимость от ископаемых ресурсов;
  • используется абсолютно бесплатный источник энергии;
  • экологическая чистота методики — никакого вреда окружающей природе не наносится.

При этом, есть и недостатки:

  • неравномерность ветра создает определенные трудности в выработке энергии и вынуждает использовать большое число; аккумуляторных батарей;
  • ветряки издают шум при работе;
  • КПД ветряных электростанций низок, увеличить его очень сложно;
  • стоимость оборудования и, соответственно, электроэнергии, намного выше, чем цена сетевого электричества;
  • окупаемость оборудования с ростом его мощности значительно снижается. Наиболее производительные станции полностью не окупаются.

Использование небольших станций способно обеспечить энергией ограниченное количество потребителей, поэтому для крупных населенных пунктов или регионов требуются большие устройства. При этом, ветряки большой мощности нуждаются в соответствующих потоках ветра и равномерности его движения, что для условий нашей страны не характерно. В этом кроется основная причина низкого распространения ветряков по сравнению с европейскими странами.

Устройство ветряного генератора

Различные варианты ветрогенераторов значительно отличаются друг от друга.


На приведенной схеме представлено внутреннее устройство классического горизонтального ветряного генератора. Такие модели наиболее часто используются как в промышленности, так и в быту

Промышленные устройства представляют собой сложную многометровую конструкцию, для установки которой требуется фундамент, в то время как бытовая модель может состоять из минимума компонентов (электродвигателя постоянного тока 3-12В, электроконденсатора 1000 мкФ 6В, кремниевого выпрямительного диода).

Типовая установка включает в себя следующие составные части:

  • генератор переменного тока (мощность зависит от скорости ветровых потоков);
  • лопасти, которые передают вращение к валу генератора (часто они дополнительно оснащены редукторами, стабилизаторами скорости вращения ротора);
  • мачта ветряка, к которой крепятся лопасти (чем выше находятся эти элементы, тем большее количество ветровой энергии они могут получить);
  • аккумуляторы, накапливающие энергию, что позволяет использовать ее при небольшом ветровом потоке или его полном отсутствии. Батарея также выполняет функцию стабилизации электрической энергии, поступившей от генератора;
  • контроллер – преобразователь переменного напряжения, полученного с генератора, в постоянное, которое применяется для заряда батареи. Управление контроллером осуществляется поворотом лопастей, что позволяет учитывать, куда движутся потоки воздуха;
  • АВР – устройство автоматического переключения, связывающее ветрогенератор с другими источниками энергии (солнечными панелями, электросетью);
  • датчик направления ветров – прибор, облегчающий лопастям поиск ветрового потока;
  • инвертор для преобразования постоянного тока из аккумуляторов в переменное напряжение, которое применяется в электрокоммуникациях.

Для более полного удовлетворения пользовательских потребностей прибор может быть снабжен различными типами инверторов:

  • приспособления с инвертормодифицированной синусоидой, выдающей квадратную синусоиду. Устройства этого типа подойдут для ТЭНов, ламп накаливания и иных приборов, нетребовательных к качеству сети;
  • инверторы трехфазного напряжения, рассчитанные для трехфазных электросетей;
  • установки с чистой синусоидой, которые производят энергию для более чувствительной техники;
  • инверторы сетевые, способные функционировать без батарей. Подобные устройства предназначены для схем, предполагающих попадание электрической энергии непосредственно в общую сеть.

При выборе моделей следует обязательно обращать внимание на разновидность инвертора